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This paper is—tite—iast-ta-a seriés of three which analyze an adaptive approxi-

mate approach for solving

ABSTRACT

Q.

(n+l)-dimensional boundary value problems by replacing

them with systems of equations in n~dimensional space.

Tl A scitatiin

In- this ‘paper-we sho% how to find reliable a-posteriorl estimates for the
-

error and how these can also be used in the design of an adaptive strategy.
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1. INTRODUCTION

In a recent paper, [6], we introduced the concept of dimensionally reduced
solutions to an elliptic boundary value problem. These are obtained by project-
ing (in the energy) the true solution of the boundary value problem in the n+l-

dimensional domain w x [-h,h] onto spaces of the form

V: = {jgowj(g)wj(y/h)le arbitrary} |,
where {wj};=0 "is a given set of functions on [-1,1], (x are coordinates on
W and y ranges over [-h,h]). For some basic ideas behind this concept, see
[6) and the introduction to [5]}. In [6] the focus was on the right selection
of the wj's . It was shown there that for a very wide class of problems the

Wj's should be selected such that

2k~

1 K
js0 = NGO,

span {wj}
where P 1is a second order ordinary differential operatdr intrinsic té the
elliptic boundary value problem.

In [7) we analyzed the convergence properties of such methods as the order,
N , increases.

The present paper, which is a direct continuation of the previous work,
deals with the problem of reliable a-posteriori error estimation. It also de-
signs an adaptive algorithm for the selection of the right dimensionally reduced
solution. As it follows from [6] and [7] a high number of basis functions wj
may be needed (depending on the desired accuracy) either if the thickness of the

domain, h , is not sufficiently small or there are singularities in the true

solution to the boundary value problem. (Because of the corner in the domain such
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singularities are often present in the neighborhood of 3w x {-h} and
3w x {h}.)

Since singularities are local phenomena it is of utmost practical importance
to introduce dimensionally reduced solutions that permit N , the order, to
vary throughout the domain' w . This aspect, specifically the adaptive choice
of the distribution for N , is also addressed here.

We now give a short review of the contents of this paper.

In Section 2 we give a precise formulation of the model problem (which is
identical to that of [6]) and prove some auxiliary results.

Section 3 is devoted to the construction of an estimator for the error.

The main theoretical results in this section are Theorem 3.1 and Theorem 3.2,
which show that the introduced estimator is an upper bound for the error but on
the other hand is not too conservative (away from singularities and fer rea-
sonably small h ). Numerical experiments verify this and furthermore indicate
that even for relatively large h or strong singularities thé estimator is of
the same magnitude as the error. The problem of how to detect if the estimator
is unacceptably conservative and how to improve it are addressed in Section 4.

In Section 5 we extend the concept of dimensional reduction to include =
possibly different number of basis functions, wj , in different parts of the
domain. We also design an adaptive strategy to select the right distribution for
the number of baéis functions. This strategy is based on our ability to give
reliable estimates for the error much in the same way as the strategy used by the
finite element solver F.E.A.R.S. to generate an 'optimal' grid (cf. [1)).

Finally Section 6 (and also 4) contains a numerical example that illustrates

how well the error estimation and the adaptive strategy perform in practice.

TR YT




2. NOTATION AND THE MODEL PROBLEM

Let H be a separable Hilbert space with inmer product <u,v> and norm
Hull = <upu V2.

A denotes a (possibly unbounded) self-adjoint linear operator in H with
domain of definition D(A) .

Furthermore we assume that A 1s a strictly positive-definite operator,

i.e., there exists C > 0 such that

Y u€D(A): CHqu < <Au,u> .

Let M be a self-adjoint bounded linear operator in H . M 1is also

assumed to be a strictly positive-definite operator.

1/2 /2 ,1/2

DA™ ) 1is itself a Hilbert space with inner product <u,v> + <A
The same is true about D((M_lA)k) for any integer k > 0 .

I denotes an interval on the real line. L2(I;H) is defined as the set

of strongly measurable functions wu: I + H such that ||u(')|| is an element
of LX(I), (cf [4]). The same goes for LA(I;D(aY?)) and L2(1;p((M1m)%)).
We also need Sobolev spaces of functions with values in H,D(Allz) and

D((M-lA)k) . Hl(I;H) denotes the space of functions u: I + H such that
u(*)€ L2(I;H) and -ad;u(')éLz(I;H) , (cf. [2]). The spaces for D(Allz)
and D((M-lA)k) are defined similarly. The derivative is taken in the distri-
butional sense.

Hl(I) denotes the standard Sobolev space on I .

Assume a and b are real valued functions in Lm([—l,ll) such that

]
A

o S aly)

-
A

< b(y)

u,A v .,
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for some constants a, >0, bo

a (y) = a(y/h)
b (y) = b(y/h) .

d d
By P we denote the differential operator -~ dy(ah E;) . Let f and

d
h(dy
g be two arbitrary vectors from H . We consider the following model problem

d,.h h
(¢)) PpgyMu” + byAu” = 0 in J-h,nl

d ., h
a, dy Mu =g for y=nh

d , h
ay dy Mu =f for y = -h

The precise formulation of (1) is

1/2

(2) [ oPeul((-n,n];H) NL2([-h,h]; DA %))

B (u",v) = <g,v(h)> - <£,v(-h)>

| v vent((-h,h];#) NL2([-h,h];0al %))
v

where Bh denotes the bilinear form

“h h
1/2 4 1/2 4 /2. ,1/2
Bh(u,v) = J a, <M dy u,M dy v>dy + J bniA u,A”" “vy>dy .

oh -h

- - - B B ter N e S s—— t——— i e & m b - . - et wmmt G v

>0 . and b, €L ([-h,h]) are then defined"
8 h
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For more detalls see, [6}. In that paper we introduced the notion of dimensionally

reduced solutions to (1). Let {wj};=0 s;lil([—l,ll) be a given sequence of

linearly independent functions (referred to as basis functioms).

Definition
The dimensionally reduced solution u: of order N 1s the projection
of uh onto the space
h_ % 1/2
ve = { ] v.(y/0)x |x, €045, j=0,..,N}
N =03 3

The projection is with respect to the inner product Bh(u,v)

We proved that in order to obtain optimal rate error estimates for h ¥ 0

o

there is essentially only one choice for the sequence {wj}j=0 . This is related
-1 d d
to the operator P = b dy a dy

THEOREM. There exists a sequence of linearly independent functions

(4} » vith

}21-1

3=0 i>1,

1G) N(Pi) = span{wj

that has the following property:

(i1) For any integer N > 0 and for any given set of vectors

-1\N
£,8 €D((AM 7)") there exists a constant CN (independent of h)

such that

h h 2N+1/2
[Hu"=aB 111 < n 22

N(Pl) here denotes the nullspace of pl | and [[1-{]]. 1is the energy-norm

E
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associated with the bilinear form Bh . This is slightly different from the

formulation in [6], where we used the norm

h h
d 2 1/2 . 1/2
1 s liPey + [ 1 2 a2
~h ~h
It is obvious though, that these two norms are equivalent with constants in-
dependent of h . k
For more details concerning this theorem and its converse we refer to [6]. i

It is now conveinent to introduce

Definition
Any sequence {wj};_o that has the two properties listed in the previous

theorem is said to be an optimal sequence of basis functioms.

It follows immediately from Theorem 4.1 of [6] that any two optimal sequences

o0

of basis functions {¢j}j=0 and {wj}j-o

satisfy
span{¢j}?=0 = span{wj}?ao VN >0

We shall often use this fact without explicitly mentioning so.

In the present paper we need a slightly different but weaker version of the

result contained in Theorem 4.1 of [6].

LEMMA 2.1. Let {wj}?ao be an optimal sequence of basis functions,and let

N be an integer > 0 .

For any nontrivial set of vectors f,g€H there exists a constant CN




(independent of h ), such that

CNh2N+1/2 PRI

h
unl g

for h sufficiently small.

Proof.

The proof is by contradiction, i.e., we assume

" teupk] ] = o212

for some sequence hi , with hi >0 as 1% =,

If f and g are linearly independent, Theorem 4.1 of [6] then gives that

) 2N

span{wj} =0 c: span{wj §=0

and this is obviously a contradiction.

14

We therefore only have to consider the case when f -and g are linearly

dependent, say f = a-g , g # 0 . As in the proof of Theorem 4.1 of [6] it now

follows that

(3) o Yol ~ dy WN_'_lespan(dy wj}

2N
=0’

where wo and wl are as introduced in Lemma 3.1 of [6]. Since
A ]

span{

d
3 ¥3im0 = BPant ¥ 35 ¥




1

Y] ——wi-c

But according to [6] \l'(; and xbi' sati
d .o k

a dy wl(l) =1,"

so (4) 1is obviously a contradicti
For the analysis in this paper W

one concerning the true solution u’

sionally reduced solutions u: .

LEMMA 2,2, Let uh denote th

K>0
f,g €

then

p ¢




N
LEMMA 2.3. Let u; - 2 tl)j(y/h)xj denote a dimensionally reduced solution
j=0

of order N . If for some integer k > 0
r,g€0(aH*

then

x, €0(F* W0y en

3

Proof.

Let 3g€HN+1 denote the vector (xo,..,x It is clear than x is

N) ‘

the solution to

wecal 25,4 25 4 Wl e 2y o rys Vyen™l
where C = {c¢ }N D = {d }N and r = {(r }N are given b
= 1j°1,5=0 » 2 i3'1,3=0 z 171=0 °* g y
1 1
d d
¢jy = J wi(y)wj(y)dy, dij = J Iy wi)(E; wj)dy
-1 -1

and r, = wi(l)g - wi(-l)f respectively. (We have here used (-,:) also to
N

denote the inner produce [ <X4,¥4> 1in HHL
i=0

Due to the fact that A 1is self-adjoint and M bounded we get that

X €[D(A)] M1 and

§
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By successive application of this equality it féllows that _ge[D((AM-llk)]Ml

~1A)k+1) ]N+1

implies x €{D((M . This finishes the proof of the lemma.

O]
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3. A-POSTERIORI ERROR-ESTIMATION IN THE GENERAL CASE

As already mentioned in the introduction one purpose of this paper is to
derive a reliable technique for a~posteriori estimation of the error introduced
by dimensional reduction. The error here is measured in the energy-norm. The
key ingredient of this technique is a socalled estimator Est, which we now
proceed to define.

Let eéﬁl([—h,h];m be the solution to
~ d - - d. . h _ h _
(5) Ph(dy)Me Ph(dy)MuN b Auy in J-h,h{

d d h
ahdyMe g-ahdyMuN for y=h

d . d h .
Laha;Me—f-—ah-a—y-MuN for y=-h .

The exact meaning of (5) is

pomaes

(6) eeﬂl[—h,h];H) and
h
f ah<M1/2§% E,Mllzé% v>dy = <g,v(h)> - <f,v(-h)> -
~h
h h
_J ahmllza% u:’ulﬂasi; v>dy - I bh<Au:,v>dy
~h ~h

Vver ([-h,nlH) .

In the equations (5) and (6) we have used the fact that u:(y)GD(A) » which

immediately follows from Lemma 2.3 with k = 0 .
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Since (6) is a Neuman problem for € it only has a solution provided

h
h
<g,x> - <f x> - J bh<AuN,x>dy =0 Yx€H
=h
Because of the equations defining u: it follows that this is true if
€)) 1€ span{y }N
ji=0

Note. According to Theorem 3.1 and 4.1 of (6] condition (7) is in general

necessary and always sufficient to ensure that
h h
|||u-uN|HE+O for h->0 .
Certainly (7) is satisfied for any optimal sequence of basis functions.

We now define

h
-h

The function ¢ 1is clearly not uniquely determined, but since only é%—e is

involved, Est is well-defined. We shall now show that the estimator Est

exhibits some very attractive properties.
h

THEOREM 3.1. Let u be the solution to (2) and ug

reduced solutior of order N > 0 corresponding to a sequence of basis functions

a dimensionally

that satisfies (7). If Est 1is as defined in (8) then

L
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Note. In the terminology of [1] this theorem says that Est is a

'guaranteed' upper estimator.

Proof

Clearly

h h h h
II'U _UN"'E = SUPIBh(U'“UN.V)l/IIlvlllE ’

1/2

where the sup is taken over wr€Hl([—h,h];H)f]Lz([—h,h];D(A )) . According to

the definition of € this is nothing but

h
1/2 2 d
supl | & e/t Swanlry
~-h

and using Schwarz's inequality we now get

h

[Pl g < ¢ [ a | bt/2 L el Zapt/2 - Eor

-h D

For use of the estimator Est 1in actual computations it is important that
it is very close to the real error in a wide class of situations. In the termin-
ology of [1] this is expressed by the requirement that Est be asymptotically
exact. The following theorem contains a precise formulation of the asymptotical
exactness for the estimator Est . It is essential here that the dimensional

reduction is based on an optimal sejuence of basis functioms.

- il SIS e A aa 2 1 A e




Let {v },

THEOREM 3.2. 33=0

h

order N >0 ,
N+1
o HTH L

If Est
Est =
(-]

Note. Here

Proof

Since f,g €D(AM-1)

can be selected so that

We now have

where the sup is taken over

u be the solution to (2) and ug

Asgsume furthermore that f and g are elements of
is as defined in (8) then

[HuP-f 1 ) avom®)y . nf

it follows from Lemma 2.3 and (5) that ¢

h h
ot = [ ayart/? L el Losayiic [ o /2 L cji2an/?
~h -h
h h
< (sup| jahml/z L 2 waylr1Ivl - UHel /¢ [ a2 & el Zan MYy
-h -h

15

be an optimal sequence of basis functions. Let

be the dimensionally reduced solution of

—

denotes the integer part.

in this case

e €ul([-n,h];D(a)) .

v €ut((-h,h];H) NL2((-h,01;0 %)) .




g
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As in the proof of Theorem 3.1 this last expression is equal to

"=l -

The theorem will therefore be proven if we show that

h

1/2
© [ oal1at el ey < o’ [ a1 2 & el iy

-h

It is clear that by appropriately selecting the undetermined constant of

€ , we can obtain

h h
1/2 2 2 d ,1/2 2
a0 [ oyl 187 2y < on? [ a1 2% |2y -
-h ~h
h
= ch? 4
= Ch J <y ©° dy
-h

Now from (6), the definition of

h

d d
J nh<a— E’dy Ae>dy = J ah<M

-h

- <g,M lac(h)> ~ <f,M lac(-h)> -

h

~h

h

~h

h
1/2 4
Yy
~-h
h
J ah<M
-h
h.
h
I bh<AuN,

-h

€ , we have

M “Ae>dy

Helllg/¢ [ a2 & eliPanpt/? ]

€

1/2 4

~1
dy M TAe>dy
h 1/2 4 .-
Iy UM ! ay M M Ae>dy -

16

can be chosen such that




and introducing uh this is, because of Lemma 2.3, equal to
-1,,h h
Bh(M A(u -uN),e)
By an application of Schwarz's inequality, this expression can be bounded by

- h h
TP - el ] -

From the fact that A is strictly positive-definite together with (10) it

follows that

h
Helll. < cawn®(] a ||-& a2 2apt/2
h dy
~h

and since we only need to consider small h this gives

h

d ,1/2 2 - h h
J ahlld‘y‘ A/ e]|“dy = Bh(M La(u ~uy),e) <
-h

h
= C'”"_IA‘“”"‘;)”'E‘J ayl I3 a2l 12t/
-h

By insertion in (10) we conclude that

h
an [ opl1at2c] 2y < anll] a2
-h
For the rest of this procf let us assume that N 1is even (the procedure
for N odd 1is quite similar, cnly there are slight variations of Lemma 2.1 and

Theorem 2.1 of [5] needed in zhis caze).




and g replaced by AMlf and an’l
assumption that f,gGD((AM-l)N/2+1) we get
. -1, h h M1/2
[P 1] < o™ 2,

and this combined with (11) immediately leads to

h
1/2 42 283
J bhllA / e] | dy E.CNh .

=h

On the other side from Lemma 2.1 it follows that

2N+1 h h 2
CNh il”u -UNIHE .

h
2N+1 1/2 d 2
Cyh < J a | M Iy el|dy
~h
that is we have finally proven
h h
1/2 2 2 1/2 d 2
thHA c[ldinNhJahHM d—y—elldy
-h -h

itimaiia T«

It follows immedifately from the proofs of Lemma 2.2 and 2.3 that M

and M—lAu: are solutions to the same problems as uh and uh

18

1, h

Au

just with f

g . Because of Theorem 3.1 in [6] and the

From the definition of Est and Theorem 3.1 of this paper we therefore get

[

Since the estimator Est is to be used in actual computation it is of utmost

importance that it can be calculated very simply. The equations (6) and (8) that
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include the solution of an O0.D.E. are therefore not well suited as a formula

for the calculation of Est . In the following we shall show how easily Est
can be calculated by means of different formulae. For these formulae to be valid
it is essential not only that the dimensional reduction is based on an optimal
sequence of basis functions but also that this sequence satisfles a special

orthogonality condition.

oo

Let {wj}j=0 denote an optimal sequence of basis functions which 1is
orthogonal in the semi inner-product fla g%-- é% s dy . (wj is clearly
-1

uniquely determined modulo a constant and a scalar.)
We define a sequence {¢j};=0 by
¢0 =1
1 1

6w = ¥ ) - (f b(yany ™t f b(E)y, (t)de
-1 -1

= - - 2 .
6,0 = ¥, - ¥ for 3 >
(¢j, i > 1, are therefore uniquely determined modulo a scalar.)

LEMMA 3.]. Llet {¢j};=0 be a sequence as defined above. Let

N
u: = z (bj(y/h)xj denote the corresponding dimensZonally reduced solution of
j=0

order N . If ¢ 1s as defined in (6) then there 2xist constants {ck}:_o and

{ck}:_o such that

Edi € = (% 3 (y/M H(e (+g) + C_(£-g)) +

+ (é% ¢2)(y/h)hM-1Ac1x0 for N=0
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and

d d -1 ~
Iy (d—}: ¢N+1) {y/h)hM A(chN_1+chN) +

v
-
.

d -1
+ (‘a‘y" ¢N+2) (y/h)hM ACN"-lxN for N

Proof

Since {¢j };=0 is an optimal sequence of basis functions it follows

immediately that

NEZ
€ = ¢, (y/h)e
§=0 b 3
for some ejfﬁ 0<j<M2, i,e.,
N+2
d - -1,d .
j=1
For any 1 <j <N and x GD(Al/Z)
¢ "
d 2 - 1/2 1/2 d 2 -
ane o] acd o %ay = antlZe it on] & (Lo, mn ey
-1 -h
h
= hJ ah<M1/2 34); e,M”z —(%; [45j (y/h)x])>dy ’
-~h

where the last equality is due to the fact that {¢j };“0 is orthogonal in the

semi inner-product fla -dé; . -&d; * dy . Now from (6) we get that the last
-1

expression




h

and this vanishes because h: is defined as a projection. We have therefore

proven that

1/2

<Mej,x> =0 W1<j<N, x€0@™"") ,

or

(12) e, =0 Vi<j<N .
For j = N+l we get as before

1 h
d 2, _ 1/2 4 ,1/2 4
<MeN+l,x>J a(dy bpp) @Y = hj a <M &y €M dy[¢N+1(y/h)x]>dy ,

-1 -h

and this is according to (6)

h
f h
= h<g, ¢ (Dx> = he<f,op,, (-1)x> - hJ by <Aup,dy,q (y/h)x>dy

-h

JIn this identity we also used the orthogonality of the ¢j's . Concerning the

last term

h 1

N
h
h J bh<AuN,¢N+1(y/h)x>dy-hzjzod\xj,xsJ b(Y) e (Y) by, (N)dy .
-h -1

1
This vanishes for N = 0 , because f b(y)¢1(y)dy = 0 , and therefore establishes
-1

the formula for ¢ in the particular case N = 0 .

N+1
In the following we are left to consider N > 1 . Let j be any integer

0 < § < N-1, then
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(13) J b(y)o, (¥) by, (¥)dy = J
-1 -1

where the aj's are selected such

j+2
PC) @y

i=0
This is possible because {¢ Yo
P 3 3= ilg

Since N > 1 and J R4 a(ls) ds €N
-1

N l
-1

We already know that ¢, ,(-1) =0 p;

(14)

It follows immediately from an integ
(14) that for any integer 0 < j <

1

J b(y)¢j(y)¢N+1(y)dy =
-1

The last identity is due to the or

i < ™1 . In summary we have ther

1 h

d 2,
<MeN+l,x>J a(dy ¢N+1) dy -hJ bh<'
-1 ~h
1

2 ;5
= -h (<AxN_1,x>J boy_y

that is
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values in the case of constant coefficients a and b .

Example 3.1
If the functions a and b are both constant it immediately follows that
every optimal sequence of basis functions {wj};=0 satisfies

span{wj}?=o = all polyncmials of degree < N

for any N > 0 , and vice versa.

The specific optimal sequence of basis functions {¢j};=0 vsed in Lemma

3.1 and Theorem 3.3 is now (modulo a scalar)

b = 1
¢, () =y
OB sz_l(:)dc , 322,

where ﬁk denotes the Legendre polynomial of degree k .
Because of the alternating even and odd polynomials, it immeidately follows

that

Simple algebraic manipulations with the Legendre polynomials now give

¢y = 1/2a

©1
cp = b/ ((2k-1) (2k-3)a) for k > 2 .

= b/a and ?
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From the definition of Cx immediately follows that

1/2
1
({1 a(é% ¢k+1)2dy) -Ck . i.e.,

()
=
#

(1/2a]11/2

(]
]

= [2b2/3a]l/2 and

(@)
[

2 2 5. 1/2
[2b/(2k+1) (2k-1)“° 2k-3)“a)] for k> 2

(@]
-
]

We shall now show how one can derive another set of formulae for the
a-posteriori error estimator. As it will turn out these formulae are wmuch better
suited for practical applications. For the case N = 0 it is clear that

Axo = Ch_l(f-g) . In the following we therefore only consider N > 1 .

N
© N Lo h
LEMMA 3.2. Let {Ck}k=0’ {Ck}k=0 and ug Zo¢j(y/h)xj be as in the previous

i
theorem. Then there exist constants Dij 1<i, j <2 such that

A

N
ACC +x) = h‘lnnn( 4 ) +
NN-1"ON*N/ T N 873, Gn N
~1,.12 d . h
+ h DN M(f—ah Iy MuN(—h)) and
-1,21 d . h
ACN+1xN h DN M(g-ah a;-MuN(h)) +

~1..22 d h
+ h DN M(f-ah Iy MuN(—h)) for N>1 .

Proof.

From (5) and Lemma 3.1 it follows that
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Py g o - (L ol -1 Yy -
(16) -Ph(E;)MuN-bhAuN = - (dy a e ¢N+1)(y/h)M A(chN_1+chN)
d d -1
- Gy 2 qy ) (WM TAcyyxg -

If we integrate the right hand side of (6) by parts, set v = ¢0(y/h)°x and

apply the identity (16), the result is

h
11, ~1 n 12,-1 .. _ . d h
hdnlM A(chN_1+chN) + thzM ACN+1XN = g-f - a, dy MuNI_h

with

1

1 _( 4,4

dy = J dy 3 3y P49y and
-1
1

12_( 4 4

dy = J dy 2 dy One2dY

-1

Performing the similar procedure with v = ¢1(y/h)'x instead we get

B2 M A egxy_texy) + hda M Acy xy =
d  h d . h
01D (gay, & Mbi(0)) = 6 (-1 (E=ay 35 Mo (-h)

with

d d
dN J E; a dy ¢N+1¢1dy and

Iy 2 ‘w2h -

22_Jd d




The lemma therefore immediately follows if the matrix

_ .13,2
LN COn PR

is always invertible. The proof of the invertibility follows by contradiction.
Assume gN is not invertible for some N . This implies that some nontrivial

linear combination of the columns of gN vanishes. 1In terms of the functions

and ¢ this says that some nontrivial linear combination s

PNl N+2 191 *

82¢N+2 exists such that

1
an ' 4 a 4 (8,0,,+5,0 ) vdy =0
dy ~ dy “TT17NH1 T2YN42
-1
for v = ¢o and v = ¢1 . By performing an integration by parts we easily see

that this identity must also hold for v = ¢j 2 <j<N. Since the sequence

{¢j};=0 is an optimal sequence of basis functions we know that

d 4 N
E; a iy (81¢N+1+82¢N+2) = bjzoaj¢j

for some set of constants {aj}?=0 . Combining this with (17) we conclude that

d 4
dy ®dy Grtmitsotwe? =0 -

Due to the fact that 81¢N+1(y) + 32¢N+2(y) =0 for y=+1 this implies

St St =0

PN w—rv*m"
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which obviously contradicts the fact that this is a nontrivial linear combination.

]

The difference between the formulae given in Theorem 3.3 and those that
are based on Lemma 3.2 is that while the first include elements of the form

Ax the latter are expressed solely in terms of f,g and the x,'s . In

3 3

practical applications we seldomly know the exact values of the x,'s . In-

3

N
stead we compute some approximate values x e.g. using a finite element

j L

method. The error introduced by using approximate values derived, say from
finite elements, in the expressions of Lemma 3.2 can be neglected. The reason

is that the difference between x, and ;j in the H norm (viz L2) is ‘

3

normally very small. The problem with the expressions of Theorem 3.3 in this

context is that in general A§j is not at all defined.

As before we now give the values of the constants D;j in the case where

a and b are both constants.

Example 3.2

Assume a and b are constants. In this case we already know that 8N =0 .
Lemma 3.2 therefore reduces to formulae for ACyxy , and AC . xy , N> 1.
It is easily seen that these are

-1/2

-1 d h
ACNxN-l = h “(2a(2N+1)) [M(g-ah ay MuN(h)) +

+ (—I)NH(f-ah -%- Mu:(—h))]
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ACyy 1 = 0 (2a(203) M 2 ((g-a, £ Mug(m)) +
+ )V (e £ Ml (-h)))

for N>1
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4. IMPROVED ERROR ESTIMATION -- A SPECIFIC EXAMPLE

As mentioned before it is very important that we are able to estimate the
error accurately. Theorem 3.2 shows that our estimator Est does exactly that
provided the data is sufficiently regular and h 1is not too large. In this
section we shall address the problem of how to detect if the estimator Est
is too conservative, due to singularities in the data or large h , and what
can be done to correct it. For simplicity we consider the model problem

3. 2 3.2, h
[(3; + (3;) Ju

0 in @ = 10,1[ x J-h,h{

Buh

757 =g for y=h
h

du

Sy = -g for y = -h
W =0 for x=0,1,

where g 1s an element of LZ([O,ll)
Let {¢j};=0 be the sequence of polynomials introduced in Example 3.1.

The dimensionally reduced solution of order N , u: , has the form

h N
uN(x,y) = jZO¢J(y/h)VJ(x)

1
where vjeﬁ ([(0,1]), 0 < j <N . Let ey denote the exact error, i.e.,

h _.h
ey = U - uy . Since everything is even in y all the terms in the dimen-
sionally reduced sclutions corresponding to odd indices vanish. From here

on we only consider dimensionally reduced solutions of even order 2N .

Let us start by giving a tab.2 that shows the relative error

g AF g cmotee oo
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(=||le2N|||E/|||uh||lE) and the efficiency index of the estimator Est (Eff =
I1leswlll/Est) in the case g(x) =n/4 , for N=0 and N = 1 respectively,
2N E

and for different values of h .

Table 4.1
N = 0: N=1:
_h_ Rel.Error  Eff. h_ Rel.Error  Eff.
1/2 0.67 0.88 1/2 0.121 0.69
1/4 0.43 0.94 1/4 0.051 0.68
1/8 0.24 0.97 1/8 0.019 0.68
1/16 0.12 0.99 1/16 0.007 0.68
1/32 0.06 0.99 1/32 0.002 0.68

From the table it is evident that the efficiency-index approaches 1, as
h+0, for N=0, but that this is not so for N =1 . The numbers therefore
¢learly show that some smoothness condition, as in Theorem 3.2, is essential in
order to ensure that this index converges to 1 for h + 0 . For most practicel
applications though, an efficiency-index of 0.7 is completely satisfactory ard
no corrections to Est are needed. It is also important to note that h = 1/2
corresponds to a square and that Est still gives a very reliable estimate for
the error. The next table lists the efficiency-index, also in the case where
g(x) =n/4 , but for N=2 and 3 and 3 different values of h .

By a comparison of Tables 4.1 and 4.2, it is seen that the efficiency sig-~

nificantly decreases as we include more and more polynomials.
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N= 2 N = 3:

h Rel.Error Eff. h Rel.Error Eff.
1/2 0.045 0.53 1/2 0.022 0.43
1/4 0.019 0.52 1/4 0.008 0.38
1/8 0.008 0.55 1/8 0.003 0.41

In the following we shall take a closer look at the derivation of the
estimator Est for the purpose of suggesting corrections that can increase the
efficiency to any desired level. We shall only work out the details of a first
correction.

The exact error e is the solution to the boundary value problem

2N
9,2 A
[Cg;) + (3;) ]eZN =1,y in Qh
de
°CoN
3y Pon for y=h
de
2N
3y = ~Pon for y = -h
€N = 0 for x=0,1 ,

with

3,2 2.2, h
rZN -[(-a_x + (’E) ]UZN(X9Y)

and

- 3 ,h
ooy = 8(%) 3y 1oy (%x,h) .

BTNy




In terms of complimentary energy the norm of €N ’IleZNIIIE , can now be

characterized by

1 h
Meggll2= min [ [ (Pyreliy)avax
2R (s,t)éMo_h( )
where
(s,t) €M iff

(s,0) €al@n?®

for y = -h

1f we define t, by

L)
dy to = TN

t, = Pax for y=h and
to = ~Pon for y = ~h

it is clear that (O,to)éll. On the other hand it is also clear that Est =

(f} Ih ':i(x,y)dydx)]‘/2 , i.e., Est 1is simply a particular value of a functional,
C -h

E N TRl ol

P
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the minimal value of which is the exact norm of the error. One way to improve
the estimatior Est is therefore to take the minimum over more than just the
single function to . This should not be exagerated since we also have to keep

the formulae simple. Define

X
s(x,y) = j (rZN(z,y) - ;ZN(Z)(ﬁ%-c)(y/h))dz
0

and
t(x,y) = hr, (x)z(y/h) ,

where ;éN(x) denotes the function

h

= = L
rZN(x) =55 J rn(xy)dy
-h

and ¢ 1is an arbitrary element of Hl([-l,ll) . It is obvious that

If furthermore ¢ satisfies (1) =1, z(-1) = ~1 it also follows that

t = for y=h, and t = “PoN for y = -h

PoN
From Lemma 3.1 we get the identity

ro () = (& 8 ) (y/h) T, (%)
N *sY dy “amer’ VY 2N ,

where 22N+1 denotes the Legendre polynomial of degree 2N+1 , 8o it immediately
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follows that

1 h
J J (sz(x,y) + tz(x,y))dydx =
0 -h
r 1 ¥ 1 1/2
w3 [y |, (x))%ax + h | 2(y))) 2dy | ([T, 2dx)
= y)dy | (ry(x)) "dx dy Lone1 9)=E(9))) 7y [ (Jr ) "dx
-1 0 -1 00

It should be noticed that the estimator Est 1is obtained from this with the

choice G&(y) = 12N+1(y) . If we define

1

A(h) = h3J (Tpy()%ax  and
0
lx

B(h) = h J(f?zN)zdx . then
00

the previous expression can be written as

1
d 1/2

1
(18) ( jc2<y)dyA<h> + J(;l;umﬂ(y)—c(y)))zn(h)> :
1

-1

It is easy to see that the minimum of this expression over ; approaches

1

( JzéNﬂ(y)dyA(h))l
-1

2 _ Est as h-+0

provided A(h)/B(h) -+ 0 for h -+ 0 . In the case that A(h)/B(h) » » for

h + 0 the minimum of the expression (18) approaches

GAYBMN Y4 a8 h-o0 .

R A A B




Based on these asymptotics we introduce

Est if A(h)

Est, = f

(4A(h)B(h)) 1% %2
c '?

where T is some specified constant. Qﬁﬁgf
tell us whether we shall use the value of i

Since we know that hr, (x) = 0 oy (%) ves ¥
expressed in terms of p,. . It follows

exactly if PoN is smooth. Since the ‘ghioy
the interval {0,1] we get that the

tion of the error in parts of [0,1]

the interval [0,1] into K disjoin

R
Est2 = ( Z &t
i=1

where Estl(I ) refers to the estimaﬁﬁﬁ'

b
The following table shows the efficiency«
IIIeZNII|E/Est2) in the case g(x) = =/
values of h . The interval [0,1] was
length, i.e. K = 8 , and the constant-
chosen to be 102 .

Although the efficiency-index is

improvement over Table 4.2. Again nuti

of h . If additional accuracy of the
obviously be obtained by an extensiom

Whether such additjonal corrections &
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5. SOME REMARKS ON AN ADAPTIVE STRATEGY

As already mentioned in the introduction, the goal of this paper is not
only to derive reliable estimates for the error, but also to use these estimates
as tools in an automatic selection of the right order dimensionally reduced
solution for a given problem.

First let us introduce a slight generalization of the concept of dimen-

sionally reduced solution. Instead of projecting onto the space

N N
{7 v, (y/0)x, |x €D(A1/2) , i=0,..,N} we project onto { } y.(y/h)x,|x €K, ,
520 3 3773 j=0 3 b L BN
j=0,..,N} , where {Kj}jzo is a family of closed subspaces of D(Allz)

To see the importance of this generalization and describe the ideas behind

the self-adaptive strategy we shall consider the case that A 1is a differential

operator on some domain £ . Let £ be divided into k disjoint subdomains
Qi , 1 <i<k , and let N, 1<1i<%k, be k nonnegative integers. Set
Kj = {uGU(Allz)Iu(x) =0 for x€ U Qi} , the extended concept of dimensionally

Ni<j

-4N

} ,
1°3=0
different order of the dimensionally reduced solution in different parts of the

reduced solutions with this family {K N = max{Ni} , 1s one that permits
i

domain @ . This is extremely important for practical applications, where a

low order dimensionally reduced solution may very well be satisfactory in the

interior of the domain and away from singularities in the loads and at the same

time a high order solution is required near the boundary or near singularities.

As a total estimator for the error let us use an expression of the form

k 2 1/2
(19 (I Iny(NDID ,
i=1




where ni(N refers to some estimator on the domain . with respect to

i) i

dimensional reduction of order Ni . (ni could for example be the estimator

Est or the corrected estimator Est2 of the previous section.)

To set a goal for the 'best' distribution of the orders {Ni}li(=1 for

a dimensionally reduced solution we need the concept of cost. Let us assume

that the cost of (solving) the dimensionally reduced problem with orders

k
{Ni}i=1 is given by
E o
(BN.+1) m(Q,) ,
1=1 i i

where a and B8 are two positive constants and m(Qi) is some measure of Qi .
As a 'best' distribution of the orders for a dimensionally reduced solution ‘

we define one which for a given cost minimizes the energy norm of the error.

(We could also have defined a 'best' distribution as one that for a given value

of the energy norm of the error minimizes the cost. Which of these two defini-

tions we take makes no difference in the strategy we propose.)

The following is very heuristic in nature and by no means an exact verifi-
cation that the strategy works. Let us use the expression (19) as if it were
the exact norm of the error. Secondly let us assume this expression to be defined

for all positive values of the N,'s , and not only integers. By introduction of

i
Lagragean multipliers it is easily seen that a 'best' distribution of the Ni's

has to satisfy

3 c (independent of 1 ) suck that

3 2
sﬁz([ni(Ni)] )
(20) ~Cc, Vi .
)

(3N1+1)°‘1m(9




In practice we only have the values of the ni's at integer points and a
discrete equivalent of (20) is then
2 2
[n, (N, +D 17 = [ny(N))]

(21) = ve, Wi
(BN1+1) m(Qi)

We shall also assume that n(Ni+1) is significantly smaller than n(Ni) S0
that instead of (21) we get
2
[ny (N,)]

(22) =) ~ne, Vi .
(8N, +1)° " m(2,)

The strategy we propose is one that aims at equilibrating the left hand
sides of (22). We do this in a way similar to the adaptive finite element solver

F.E.A.R.S. (cf. [1]) . Let us assume that we have arrived at a distribution

}k

{N 1=1 and that the estimate for the error is unacceptably large. Our strategy

o
i
is simply to find j such that

0, 12
{N
3 (BN§+1)“'1m(Qj)
is maximal, and then increase N, by 1 . In the next section we shall see

3

how well this performs in a practical example.
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6. A NUMERICAL EXAMPLE

Consider the same prohlem as in section 4, namely

[(ﬁ)2 + (—a%)z] W =0 in 9 = J0,1[x]-h,h(

Buh

3;- =g for y=nh

aw L
3y g for y = -n
W= 0 for x=0,1

Let [0,1] be divided into the four subintervals I, = [(i-1)/4, i/4])
1 <1i<4 . Adimensionally reduced solution can now have different order in
the different intervals Ii » 1 <1 <4 . As basis functions we choose the poly-
nomials introduced in Example 3.1.

The equations that define the dimensionally reduced solutions are solved by
introducing a Finite Element discretization in the x-direction. Piecewise linear
functions on a regular mesh are used as test and trial functions for the Finite
Element Method. Since we want to illustrate the behavior of the dimensional re-
duction, and are here not interested in any contribution from the x-discretization,
we choose a very fine grid of meshsize = 2_9 . The involved linear equations are
solved by a Cholesky decomposition combined with iterative refinement. In thne
computations that we present here g(x) is chosen = n/4 . Since this choice of
boundary data makes the problem symmetric in the line x = % we only need con-

sider x in the interval [0,%] . Let 2N 1l <i< 2, denote the order of the

i ’

dimensionally reduced solution in I The following table shows the error on

g
the whole interval [0,1] (= ||]e _JIIE) and the work (here defined by %(N1+1)3 +
N

%(N2+1)3) as a function of the pair N = (Nl’NZ) for two different values of h .




Table 6.1

2N

0.3974

1

0.3257

4.5

0.3168

14

0.3160

32.5

0.3662

4.5

0.0730

8

0.0721

17.5

0.0720

36

0.3517

i 14

0.0383

17.5

0.0270

27

0.0270

45.5

0.3499

32.5

0.0292

36

0.0134

45.5

0.0134

64

2N

0.3014
0 —

1

0.2296

4.5

0.2270

14

0.2267

32.5

0.2540
2 —_
4.5

0.0339

8

0.0359

17.5

0.0359

36

0.2484
4 —
N 14

0.0134

17.5

0.0130

27

0.0130

45.5

0.2479
6 -
32.5

0.0063

36

0.0055

45.5

0.0055

64
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Based on the numbers in this table we can now find the entries with the pro-

perty that the error is smaller than any error obtained with the same or less

work. These entries are marked in the following table.




N
7

7
T

zulz ° [2 ‘ ’
i

%6 .
T

The tables 6.1 and 6.2 clearly illustrate the advantage of a non-uniform

distribution of the polynomials. It is easy to see that the true solution uh

in the limit as h -+ 0 has a paraboljic behavior in the y direction, also

for x in the middle of the interval [0,1]. This is reflected in the fact

: . - B VI LK ST PO e su O
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that the pair (0,2) is slightly better than (2,0), it also explains the signifi-

cant decrease in the error obtained by choosing the pair (2,2). For the higher
order polynomials there is a clear tendency towards concentration near the boun-
dary x = 0 (and x = 1) in the entries marked in Table 6.2 . This concentration
is more visible the smaller h 1is ; for h =) the pair (6,2) is not as good as
(4,4) but for h = 1/4 the error obtained by (6,2) is less than half the error

by (4,4) with only a slight increase in the work.

We now want to test the adaptive strategy outlined in section 5 on this exam-
ple. We consider the case h = ¥, where non-uniformity in the distribution of the
polynomials is most advantageous. As an estimator we use Est2 of section 4,
with the constant 71 set to 102 and each interval I ; divided into 2 subin-

tervals of length 1/8. The following table shows the efficiency of Est2 (Eff2

l||e2N|||E/ESt2) as a function of the pair 2N = (2N;, 2N,) .

2,
Table 6.3 2N) 0 2 4 6
0 0.94 | 0.99 1.00 1.00
2 1.06 | 0.68 0.68 | 0.68 ces
2
4 1.09 | 0.60 0.59 | 0.59 h =1}
6 1.09 0.57 0.53 | 0.53

It 18 evident from Table 6.3 that Est2 provides a reliable estimate for the

error even in the case of variable order. We also note that Est2 i8 not nec-

essarily an upper bound for the error, when the orders of the polynomials are
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allowed to vary. Steps could be taken to correct this, but on the other hand com~
putational experience shows that this effect is insignificant, and that Est2 is
very close to an upper bound in most cases.

Let us start with an initial distribution for the orders of the polynomials

given by

(2N,,28,) = (0,0)

Based on the present formula for thework and the error estimate we now compute
6j » J = 1,2, as in section 5. The result is

6, =6, =0.10

We can therefore proceed to both (0,2) and (2,0). According to Table 6.1
(0,2) is only slightly better than (2,0), so this apparent "failure" of our strat-
egy is of very little significance.

For the pair (0,2) we compute
2

61 = 0.10 , 62 = 0.14 x 10

and for the pair (2,0)

6, = 0.31 102 , s, =0.10

In both of these two cases we are told to proceed to the distribution given by

(2,2)
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For this pair we get

6

8§, = 0.14 x 1072 and 6, = 0.59 x 10~ .

1 2

i.e., if we want higher accuracy with dimensional reduction our strategy selects

the pailr
(4,2) .

In this case

8, = 0.14 x 1073 and 5, = 0.16 x 1070

so that additional requirements to the accuracy will lead us to the distributic-
(6,2)
The path that our strategy goes through can schematically be represente.. as

(0,2)

P4 Y

(0,0) , (2:2) > (4,2) » (6,2) ,
(2,0)

and based on the tables 6.1 and 6.2 this is clearly seen to be a very good choice.
The strategy has been tried in a variety of other situations and has consistently
been very effective. It has also been tried with different measures for utie work.
Here it should be noted that by changing the measure of the work we may entirely

change the "best" disgtributions for the polynomials, but the strategy detects that

easily.
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1. CONCLUSIONS
In the following we list some conclusions concerning the approach

of dimensional reduction developed in a series of three papers ([6], [7], and the
present).

a) It is common in engineering to distinguish between structures with large
and small thickness (see e.g. [3]). The approach presented here entirely
avoids this somewhat artificial categorizationm.

b) This approach gives in an optimal and adaptive way the advantages of asymp-

totic expansion (when the thickness is small) and the effectivity of the

spectral or p-version methods (when the thickness is not small, or strong

singularities are present). It has been shown that these two requirements

uniquely characterize the approach.

¢) Reliable aposteriori error estimates can be obtained for this approach, and
they lead immediately to an effective adaptive strategy.

d) The approach is numerically very robust and works well independent of the
thickness and regularity of input data.

e) The underlying mathematical theory and numerical experiments show the direc-

tion for various generalizations. These shall be dealt with elsewhere.

e
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